

www.prolightopto.com

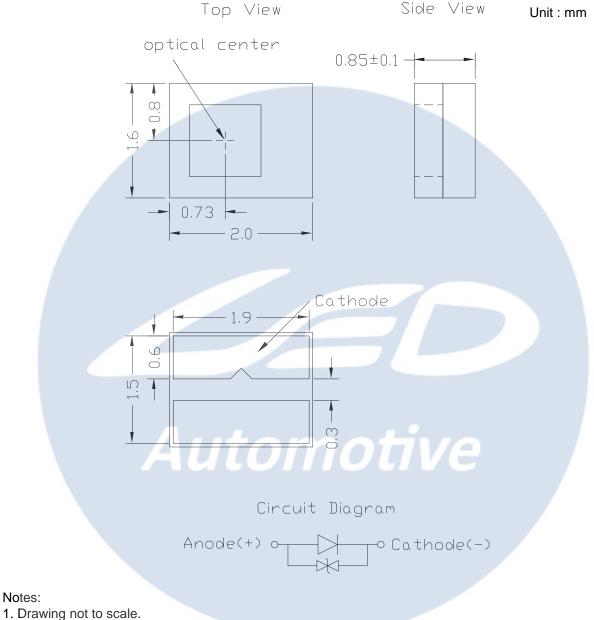
ProLight Opto ProEngine Series

Automotive

Features

- · High flux density of lighting source
- · Good color uniformity
- · RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- · Long lifetime
- · AEC-Q102 compliant
- SAE/ECE Compliant

Main Applications


- Bicycle Lamps
- Exterior Automotive Lighting
- · Floodlight
- Bending Light
- \cdot Daytime Running Light

Introduction

• The input power is 4 Watt, the multi-chip ultra high power ProEngine Serie delivers never before seen luminous flux output from a single emitter. The superficial illuminating nature of ProEngine makes them the preference bicycle lamps, typical applications include exterior automotive lighting Bending and Daytime Running Light.

Emitter Mechanical Dimensions

- 1. Drawing not to scale.
- All dimensions are in millimeters.
 Unless otherwise indicated, tolerances are ± 0.1mm.
- 4. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter.
- 5. Please do not use a force of over 0.3kgf impact or pressure on the lens of the LED, otherwise
 - it will cause a catastrophic failure.

Flux Characteristics, $T_J = 25^{\circ}C$

Radiation		Dort Number		Luminous F	Flux Φ _v (Im)	
Pattern	Color	Part Number Emitter	@10	00mA	Refer @	1200mA
Fallen		Emitter	Min.	Тур.	Min.	Тур.
Flat	White	PBVA-4FWE-F1G	310	350	355	400

• ProLight maintains a tolerance of ± 7% on flux and power measurements.

• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, T_J = 25°C

	Forward Voltage V _F (V)					
		Thermal Resistance				
Color	Min.	Тур.	Max.	Тур.	Junction to Slug (°C/W)	
White	2.8	3.2	3.6	3.3	4.7	

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 1000mA, T_J = 25°C

				otiv	Total included Angle	Viewing Angle
Radiation	Color	Colo	r Temperature	CCT	(degrees)	(degrees)
Pattern	00101	Min.	Тур.	Max.	θ _{0.90V}	2 θ _{1/2}
		5380 K	5620 K	5860 K	160	120
Flat	White	5620 K	5880 K	6140 K	160	120
Tiat	winte	5870 K	6150 K	6430 K	160	120
		6140 K	6450 K	6760 K	160	120

• ProLight maintains a tolerance of ± 5% for CCT measurements.

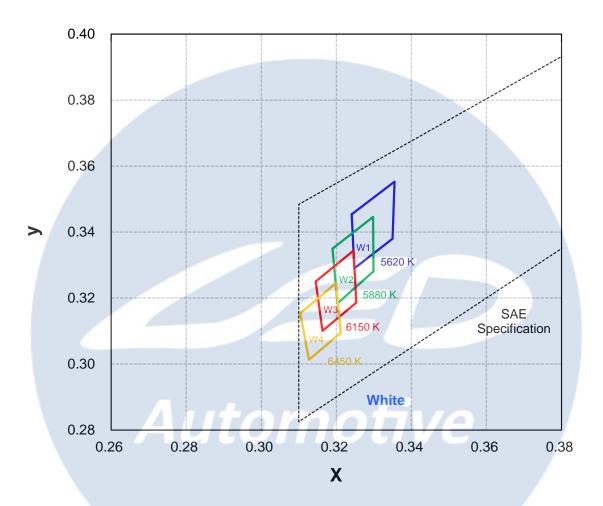
Absolute Maximum Ratings

Parameter	White
Max DC Forward Current (mA)	1500
Peak Pulsed Forward Current (mA)	1500 (less than 1/10 duty cycle@1KHz)
LED Junction Temperature	150°C
Junction Temperature for short time applications*	175°C
Operating Board Temperature	-40°C - 125°C
at Maximum DC Forward Current	-40 C - 125 C
Storage Temperature	-40°C - 125°C
Soldering Temperature	JEDEC 020c 260°C
Allowable Reflow Cycles	3
Reverse Voltage	Not designed to be driven in reverse bias
ESD withstand voltage(kV) acc. to ANSI/ESDA/JEDEC JS-001 (HBM, Class 3B)	up to 8

Note: * The LED chip exhibits excellent performance but slight package discoloration occurs at highest temperatures. Exemplary median lifetime for $T_J = 175^{\circ}C$ is 100h.

Forward Voltage Bin Structure

Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	A	2.8	3.0
W/bite	В	3.0	3.2
vvnite	C	3.2	3.4
	D	3.4	3.6

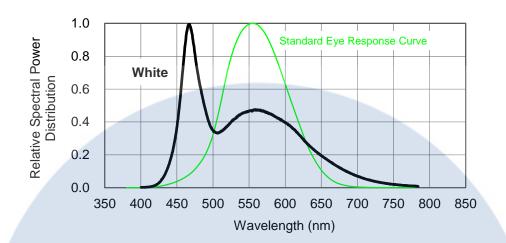

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Bin

White Binning Structure Graphical Representation

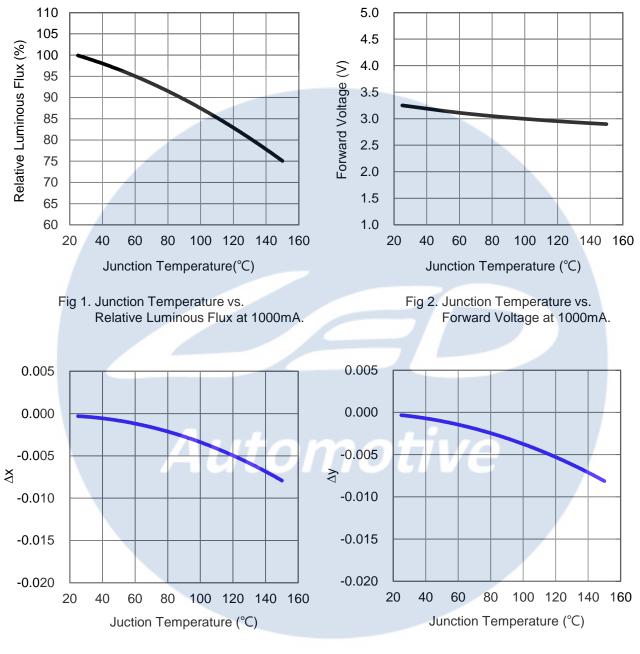
White Bin Structure

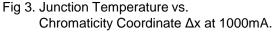

Bin Code	х	У	Typ. CCT (K)	Bin Code	x	у	Тур. ССТ (К)
	0.3241	0.3454			0.3145	0.3250	
W1	0.3248	0.3290	5620	W3	0.3163	0.3101	6150
VVI	0.3350	0.3380	5020	20 003	0.3253	0.3186	0150
	0.3355	0.3553			0.3246	0.3344	
	0.3190	0.3350			0.3104	0.3154	
W2	0.3203	0.3184	5880	W4	0.3127	0.3013	6450
	0.3299	0.3281	5660	VV4	0.3212	0.3095	0450
	0.3298	0.3446			0.3199	0.3245	

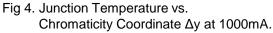
• Tolerance on each color bin (x , y) is ± 0.005

Color Spectrum, $T_1 = 25^{\circ}C$

1. White

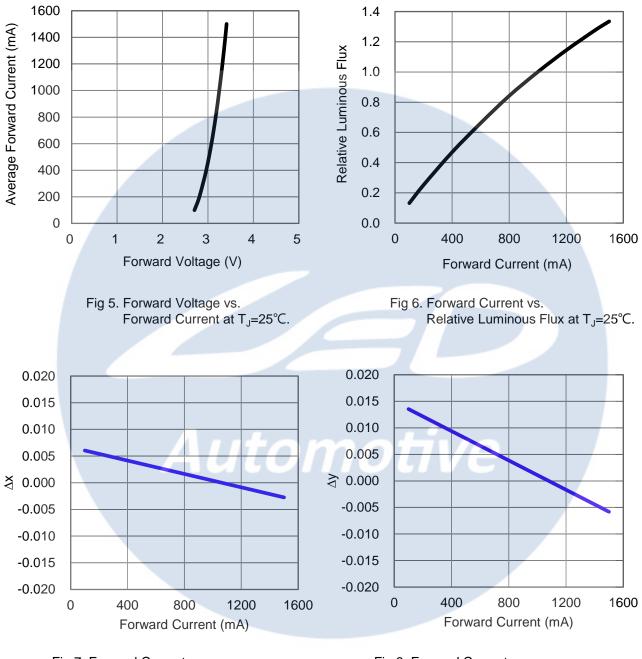
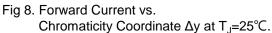


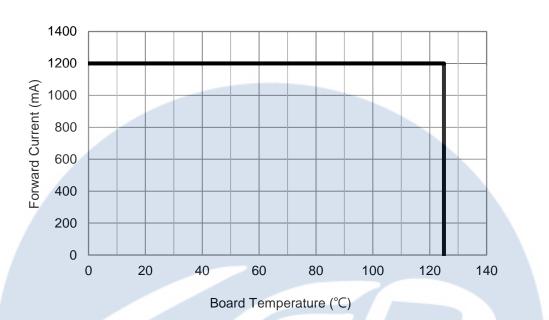

Automotive

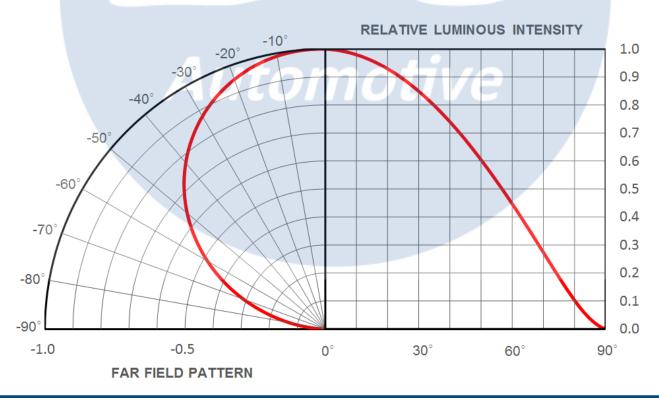

2024/05 | DS-13<u>51</u>

Junction Temperature Relative Characteristics

Forward Current Relative Characteristics


Fig 7. Forward Current vs. Chromaticity Coordinate Δx at T_J=25°C.



Board Temperature vs. Maximum Forward Current

Maximum Forward Current

Typical Representative Spatial Radiation Pattern

2024/05 | DS-1351

Moisture Sensitivity Level – JEDEC Level 1

			Soak Requirements				
Level	Floor Life		Standard		Accelerated Environment		
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA	

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

				Soak Requirements				
Level	Floor	Floor Life		Standard		Environment		
	Time	Conditions	Time (hours) Conditions		Time (hours)	Conditions		
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA		
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA		
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH		
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH		
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH		
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH		
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH		
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA		

Reliability testing in accordance with AEC-Q102

The development of this product included extensive operational life-time testing and environmental testing. Table 1 summarizes the tests applied and cumulative test results obtained from testing performed in accordance with AEC-Q102.

Table 1. Operating life, mechanical and environmental tests performed on it's package in accordance with AEC-Q102.

#	STRESS	ABV	Conditions	Duration	Failure Criteria	Rejects
<u>1</u>	Pre- and Post-Stress Electrical Test	TEST	Test is performed as specified in the applicable stress reference at room temperature.	N/A	See notes [2]	0
<u>A1</u>	Pre-conditioning	PC	Soak Tamb = 85 °C, RH = 85% Reflow soldering	N/A	See notes [2]	0
<u>A2a</u>	Wet High Temperature Operating Life	WHTOL 1	Tambient = 85 °C / 85% RH IF = max. DC [1]	1000 hours	See notes [2]	0
<u>A3a</u>	Power Temperature Cycling	PTC	-40°C to 85°C, 10 minutes dwell, 20 minutes transfer (1 hour cycle), 2 minutes ON/2 minutes OFF, IF = max. DC [1]	1000 hours	See notes [2]	0
<u>A4</u>	Temperature Cycling	тс	-40°C to 125°C,15 minutes dwell	1000 cycles	See notes [2]	0
<u>B1a</u>	High Temperature Operating Life	HTOL1	Tsolder =85°C, IF = max. DC [1]	1000 hours	See notes [2]	0
<u>B1b</u>	High Temperature Operating Life	HTOL2	Maximum specified Tsolder, IF = max. DC [1]	1000 hours	See notes [2]	0
<u>C9</u>	Thermal Resistance	TR	All qualification parts submitted for testing	N/A	See notes [2]	0
C10	Solderability	SD	245 °C ± 5 °C	3s	See notes [3]	0
<u>C12</u>	Hydrogen Sulphide	H2S	Corrosion class A: (preferred) Duration 336 h at 40 °C and 90% RH. H2S concentration: 15ppm	336 hours	See notes [2]	0
<u>E3</u>	Electrostatic Discharge Human Body Model	HBM	ANSI/ESDA/JEDEC JS-001	N/A	See notes [3]	0
<u>G2</u>	Vibration Variable Frequency	VVF	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis	N/A	See notes [3]	0
<u>G3</u>	Mechanical Shock	MS	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis	N/A	See notes [3]	0

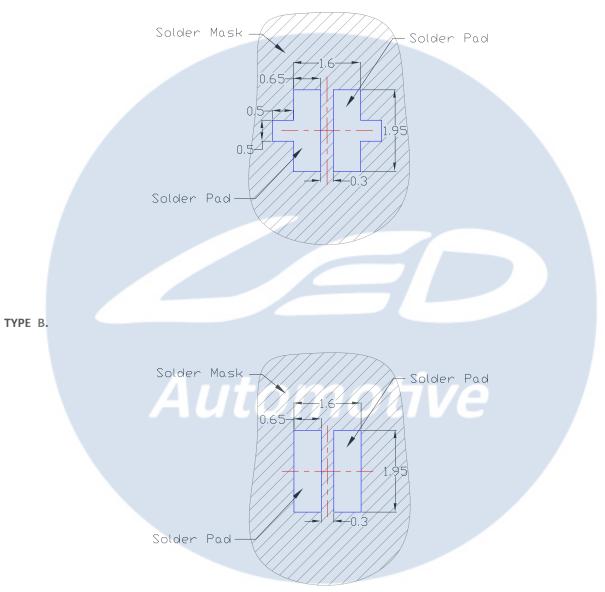
Notes:

1. Depending on the maximum derating curve.

2. Criteria for judging failure

ltem	Test Condition	Criteria for Judgement		
nem	Test Condition	Min.	Max.	
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1	
Luminous Flux or	I⊧ = max DC	Initial Level x 0.8		
Radiometric Power (Φ_V)	IF = max b c			
Reverse Current (I _R)	$V_R = 5V$		50 µA	

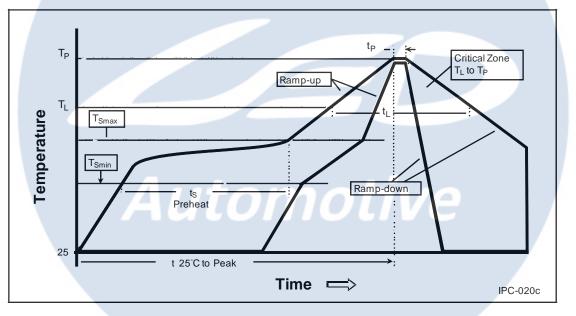
* The test is performed after the LED is cooled down to the room temperature.


3. A failure is an LED that is open or shorted.

Recommended Solder Pad Design

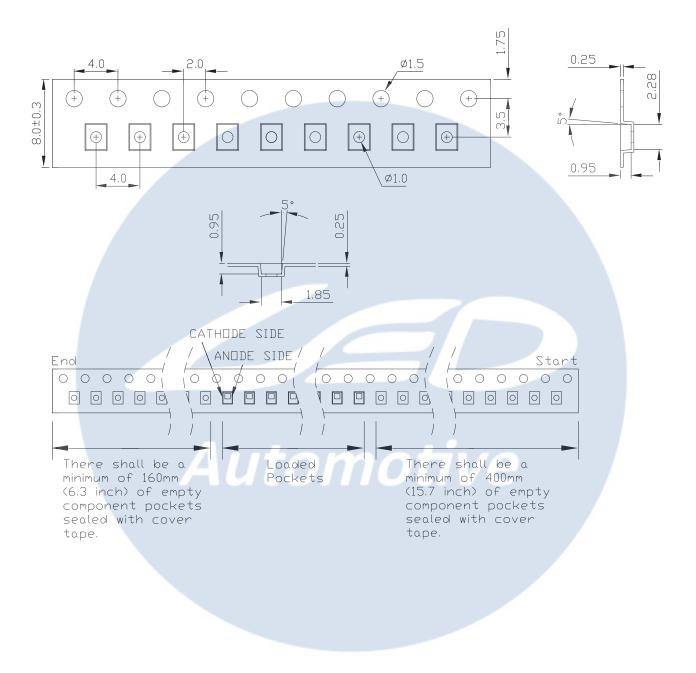
Standard Emitter

TYPE A.



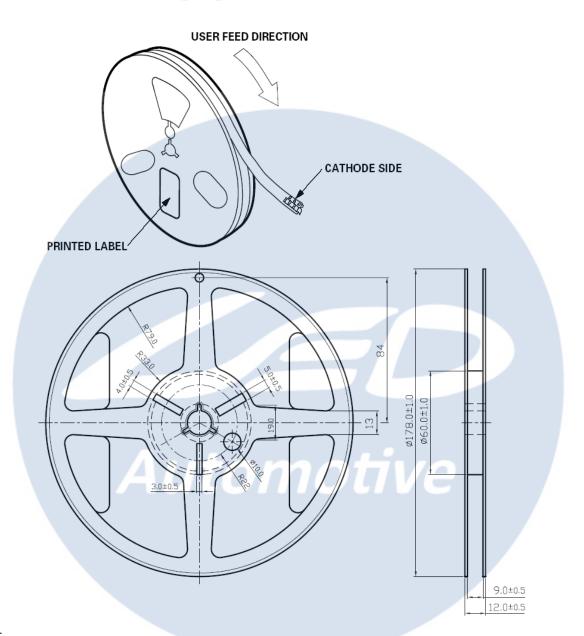
• All dimensions are in millimeters.

Reflow Soldering Condition


Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate	3°C / second max.	3°C / second max.
(T _{Smax} to T _P)		
Preheat		
– Temperature Min (T _{smin})	100°C	150°C
– Temperature Max (T _{Smax})	150°C	200°C
– Time (t _{smin} to t _{smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T _L)	183°C	217°C
– Time (t ₁)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T _P)	240°C	260°C
Time Within 5°C of Actual Peak	10-30 seconds	20-40 seconds
Temperature (t _P)		20-40 seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Reel Packaging



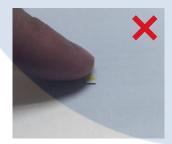
Notes:

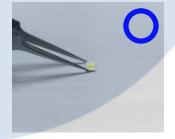
- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are $\pm\,0.1\text{mm}.$

Emitter Reel Packaging

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 2000 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.


Precaution for Use


- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. <u>http://www.prolightopto.com/</u>

Handling of Lens LEDs

Notes for handling of lens LEDs

- Please do not use a force of over 1kgf impact or pressure on the lens, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- Please do not mold over the lens with another resin. (epoxy, urethane, etc)

