

ROHS Pree

ProLight PBVC-10FWU-F3G 10W Power LED Technical Datasheet Version: 1.7

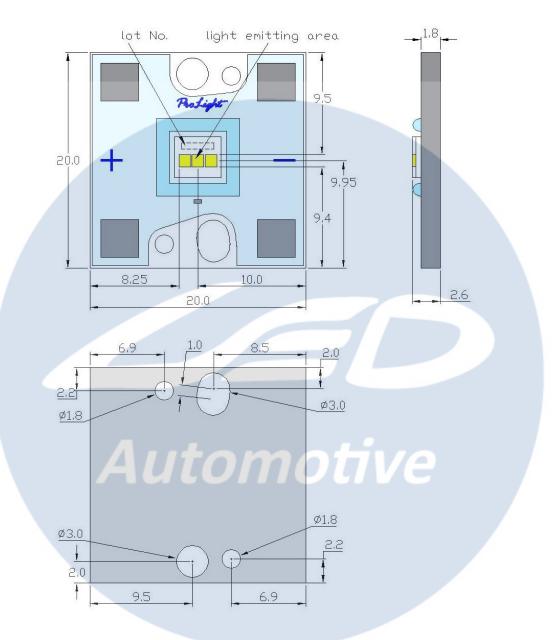
ProLight Opto ProEngine Series

Features

- · High flux density of lighting source
- · Good color uniformity
- · RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- · Long lifetime
- AEC-Q102 Qualified
- · SAE/ECE compliant

Main Applications

- Bicycle Lamps
- · Exterior Automotive Lighting
- · Floodlight


Introduction

• The input power is 10 Watt, the multi-chip ultra high power ProEngine Series delivers never before seen luminous flux output from a single emitter. The superficial illuminating nature of ProEngine makes them the preference bicycle lamps, typical applications include exterior automotive lighting and floodlight.

Automotive

Mechanical Dimensions

Notes:

1. Solder pads are labeled "+" and "-" to denote positive and negative, respectively.

- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. Unless otherwise indicated, tolerances are \pm 0.3mm.
- 5. Please do not use a force of over 0.3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics, $T_J = 25^{\circ}C$

Radiation		Part Number		Luminous	Flux Φ _v (lm)	
Pattern	Color	Emitter	@1000mA		Refer @1200mA	
Fallem			Minimum	Typical	Minimum	Typical
Flat	White	PBVC-10FWU-F3G	900	1100	1000	1250

• ProLight maintains a tolerance of ± 7% on flux and power measurements.

• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, T_J = 25°C

		Forward	Thermal Resistance		
Color	Min.	@1000mA Typ.	Max.	Refer @1200mA Typ.	Junction to Board (°C/W)
 White	7.2	9.7	11.5	9.9	2

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

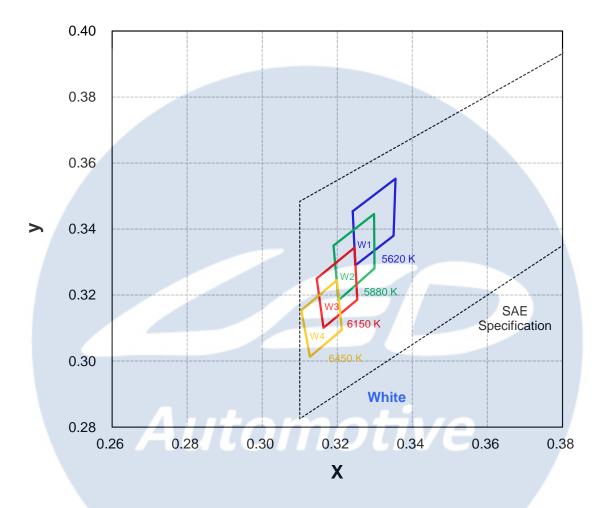
Optical Characteristics at 1000mA, T_J = 25°C

Radiation		uto	m) tiv	Total included Angle	Viewing Angle
Pattern	Color	Min.	r Temperature Typ.	Max.	(degrees) θ _{0.90V}	(degrees) 2 θ _{1/2}
		5380 K	5620 K	5860 K	160	120
Flat	White	5620 K	5880 K	6140 K	160	120
		5870 K 6140 K	6150 K 6450 K	6430 K 6760 K	160 160	120 120

• ProLight maintains a tolerance of ± 5% for CCT measurements.

Absolute Maximum Ratings

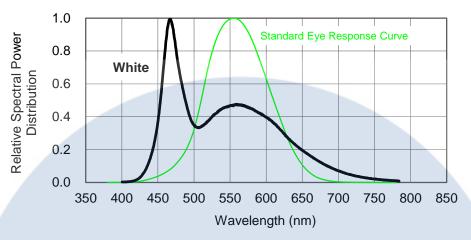
Parameter	White
Max DC Forward Current (mA)	1500
Peak Pulsed Forward Current (mA)	1500 (less than 1/10 duty cycle@1KHz)
LED Junction Temperature	150°C
Junction Temperature for short time applications*	175°C
Operating Board Temperature	-40°C - 125°C
at Maximum DC Forward Current	-40 0 - 120 0
Storage Temperature	-40°C - 100°C
Reverse Voltage	Not designed to be driven in reverse bias
ESD withstand voltage(kV)	un to 0
(acc. to IEC 61000-4-2-air discharge)	up to 8


Note: * The LED chip exhibits excellent performance but slight package discoloration occurs at highest temperatures. Exemplary median lifetime for $T_J = 175^{\circ}C$ is 100h.

Color Bin

White Binning Structure Graphical Representation

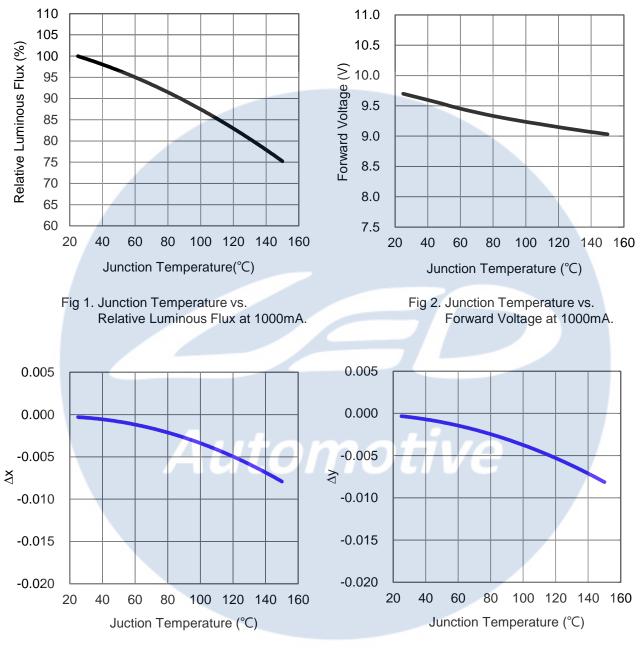
White Bin Structure


Bin Code	Х	У	Typ. CCT (K)	Bin Code	x	у	Тур. ССТ (К)
	0.3241	0.3454			0.3145	0.3250	
W1	0.3248	0.3290	5620	W3	0.3163	0.3101	6150
VVI	0.3350	0.3380	3020	VV3	0.3253	0.3186	0150
	0.3355	0.3553			0.3246	0.3344	
	0.3190	0.3350			0.3104	0.3154	
W2	0.3203	0.3184	5880	W4	0.3127	0.3013	6450
VVZ	0.3299	0.3281	5000	VV4	0.3212	0.3095	0450
	0.3298	0.3446			0.3199	0.3245	

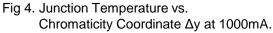
• Tolerance on each color bin (x , y) is ± 0.005

Color Spectrum, $T_c = 25^{\circ}C$

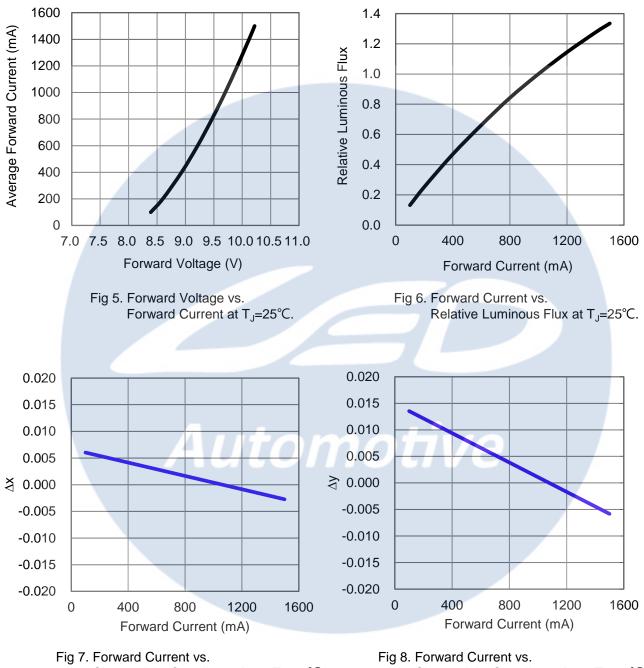
1. White



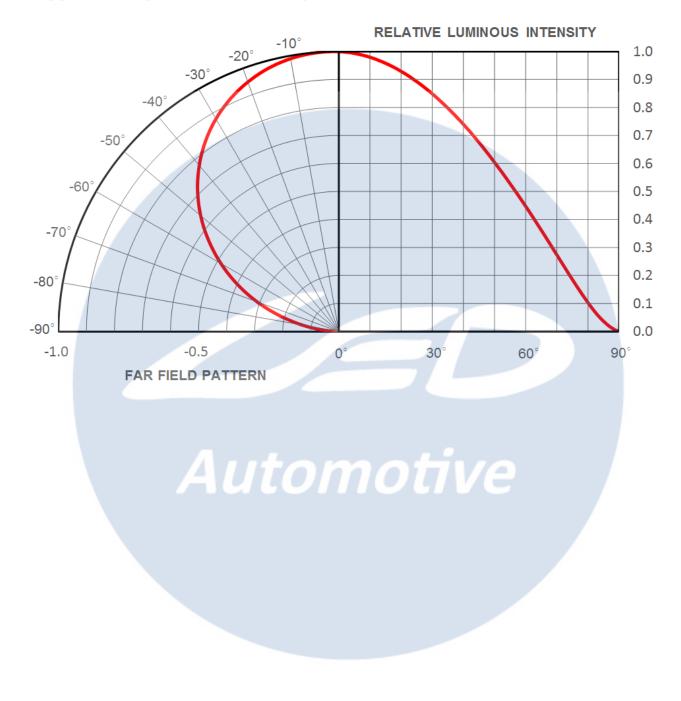
Note: Percentage of UV: <10⁻⁵W/Im acc. to ECE regulation.


Automotive

Junction Temperature Relative Characteristics



Forward Current Relative Characteristics



Chromaticity Coordinate Δy at T_J=25°C.

Typical Representative Spatial Radiation Pattern

Moisture Sensitivity Level – JEDEC Level 1

			Soak Requirements				
Level	Level Floor Life		Standard		Accelerated Environmen		
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA	

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

			Soak Requirements			
Level	Floor	r Life	Stan	dard	Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA

Reliability testing in accordance with AEC-Q102

The development of this product included extensive operational life-time testing and

environmental testing. Table 1 summarizes the tests applied and cumulative test results

obtained from testing performed in accordance with AEC-Q102.

 Table 1. Operating life, mechanical and environmental tests performed on it's package in accordance with AEC-Q102.

Abrb Stress	Conditions	Duration	Failure Criteria	Rejects
TEST Pre- and Post-Stress Electrical Test	$T_J = 25^{\circ}C$	N/A	See notes [2]	0
PC Pre-conditioning	JESD22-A113 Soak Tamb = 85°C, RH = 85% Reflow soldering	168 hours 3 cycles	See notes [2]	0
EV External Visual	JESD22 B-101	N/A	See notes [2]	0
HTFB High Temperature Forward Bias	JESD22-A108 Tamb =85°C, IF = max. DC [1]	1000 hours	See notes [2]	0
TC Temperature Cycling	JESD22-A104 -30°C to 80°C	1000 cycles	See notes [2]	0
HTHHB High temp. & High Humidity Bias	JESD22-A101 Tamb = 85°C, RH = 85%, IF = max. DC [1]	1000 hours	See notes [2]	0
PTC Power and Temperature cycle	-30°C to 85°C, 10 minutes dwell, 20 minutes transfer (1 hour cycle), 2 minutes ON/2 minutes OFF, IF = max. DC [1]	1000 hours	See notes [2]	0
ESD	AEC Q101-001	8000V	See notes [2]	0
VVF Vibration Variable Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis	Hind	See notes [3]	0
MS Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		See notes [3]	0
RSH Resistance to Solder Heat	JESD22-A111 / JESD22-B106 260 °C ± 5 °C	10 s	See notes [3]	0
SD Solderability	J-STD-002 245 °C ± 5 °C	3 s	See notes [3]	0

Notes:

1. Depending on the maximum derating curve.

2. Criteria for judging failure

Item	Test Condition	Criteria for Judgement		
liem	Test Condition	Min.	Max.	
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.8		
Reverse Current (I _R)	$V_R = 5V$		50 µA	

* The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.

Packing Specifications

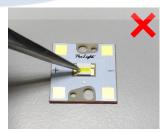
- 1. 20 pieces per tube.
- 2. Drawing not to scale.
- 3. All dimensions are millimeters.
- 4. All dimensions without tolerances are for reference only.
- ** Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30'C and humidity less than 40% RH.

Recommended Soldering Condition

- Please use lead free and "no clean " solders.
- Soldering shall be implemented using a soldering tip at a temperature lower than 350 °C, and shall be finished within 3.5 seconds for each pad.
- During the soldering process, put the LEDs on materials whose conductivity is poor enough not to radiate heat of soldering.
- Properly solder tin wires before soldering them to LEDs.
- Avoid touching the glass lens with the soldering iron.
- Please prevent flux from touching to the glass lens.
- Please solder evenly on each pad.
- Contacts number of a soldering tip should be within twice for each pad.
- Next process of soldering should be carried out after the LEDs have return to ambient temperature.

*ProLight cannot guarantee if usage exceeds these recommended conditions. Please use it after sufficient verification is carried out on your own risk if absolutely necessary.


Precaution for Use


- The modules light output are intense enough to cause injury to human eyes if viewed directly. Precautions must be taken to avoid looking directly at the modules with unprotected eyes.
- The modules are sensitive to electrostatic discharge. Appropriate ESD protection measures
 must be taken when working with the modules. Non-compliance with ESD protection
 measures may lead to damage or destruction of the product.
- Chemical solvents or cleaning agents must not be used to clean the modules.
 Mechanical stress on the Emitters must be avoided. It is best to use a soft brush, damp cloth or low-pressure compressed air.
- The products should be stored away from direct light in dry location.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Handling of without Cover Lens LEDs

Notes for handling of without cover lens LEDs

- Please do not use a force of over 0.3kgf impact or pressure on the emitting area, otherwise it will cause a catastrophic failure.
- Avoid touching the emitting area especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the emitting area .
- Please store the LEDs away from dusty areas or seal the product against dust.
- Please do not mold over the emitting area with another resin. (epoxy, urethane, etc)

