

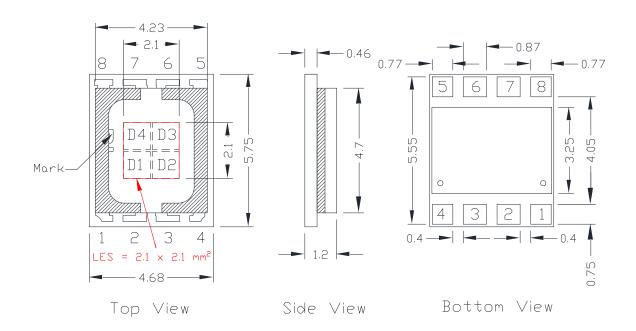
ProLight PBED-10FQE-WVWVR95 10W Power LED Technical Datasheet Version: 1.3

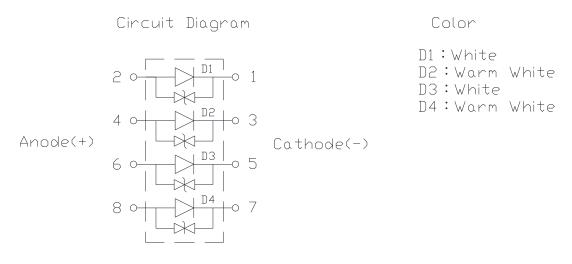
ProLight Opto ProEngine Series

Features

- · Compact light source
- · High R9 color rendering value
- · High Color rendering index
- · Lead free reflow soldering
- · Superior ESD protection
- · RoHS compliant

Main Applications


- · Surgical lighting
- · Entertainment lighting (Stage lighting)
- · Architectural lighting
- · Mood lighting
- · Outdoor lighting
- · Indoor lighting


Introduction

· ProLight PBED colorful series is a color changeable LED with maximum 4 color chips in one package. Compared to discrete LEDs, PBED series reduce the distance between LED die, creating a small optical source for excellent optical control and efficient color mixing. ProLight PBED series is much suitable for the application of color-changing lighting, especially for entertainment lighting.

Emitter Mechanical Dimensions

Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.15mm.
- 4. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter.
- 5. Please do not use a force of over 1kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

^{*}The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics, $T_j = 25^{\circ}C$

Luminous	Flux	Φ_V	(lm)
----------	------	----------	------

		Part Number	@70	0mA	Refer @350mA	CRI	R9
	Color	Emitter	Min.	Тур.	Тур.	Тур.	Min.
D1	White		120	160	85		_
D2	Warm White	PBED-10FQE-WVWVR95	90	117	60	95	90
D3	White	PBED-TOPQE-WWWWR95	120	160	85	95	80
D4	Warm White		90	117	60		

- ProLight maintains a tolerance of ± 7% on flux and power measurements.
- ProLight maintains a tolerance of ± 3 on R9 measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, T_J = 25°C

Farment Velters V

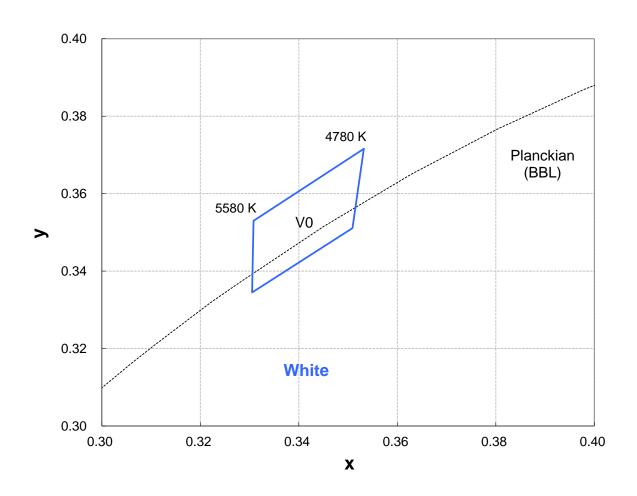
		Forward VC	niage v _f (v)	
		@700mA	-	Refer @350mA
Color	Min.	Тур.	Max.	Тур.
White	2.8	3.1	3.8	2.8
Warm White	2.8	3.1	3.8	2.8
White	2.8	3.1	3.8	2.8
Warm White	2.8	3.1	3.8	2.8
	White Warm White White	White 2.8 Warm White 2.8 White 2.8	Color Min. @700mA Typ. White 2.8 3.1 Warm White 2.8 3.1 White 2.8 3.1	Color Min. Typ. Max. White 2.8 3.1 3.8 Warm White 2.8 3.1 3.8 White 2.8 3.1 3.8 3.1 3.8 3.8

 $[\]bullet$ ProLight maintains a tolerance of \pm 0.5V for Voltage measurements.

Optical Characteristics at 700mA, T_J = 25°C

Radiation	Color	Colo	r Temperature	· CCT	Total included Angle (degrees)	Viewing Angle (degrees)
Pattern	Color	Min.	Тур.	Max.	$\theta_{0.90V}$	2 θ _{1/2}
Flat	White Warm White	4780 K 2790 K	5180 K 2910 K	5580 K 3030 K	160 160	120 120

ProLight maintains a tolerance of ± 5% for CCT measurements.

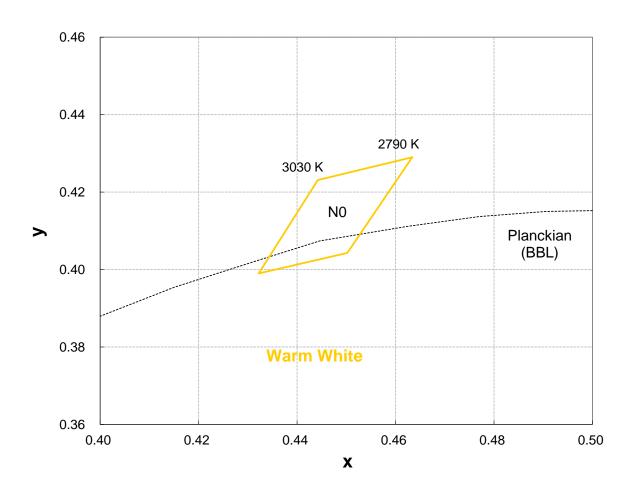

Absolute Maximum Ratings

Parameter	White/Warm White
DC Forward Current (mA)	700
Peak Pulsed Forward Current (mA)	1500 (less than 1/10 duty cycle@1KHz)
ESD Sensitivity	±4000V (Class III)
(HBM per MIL-STD-883E Method 3015.7)	= 1000 v (Olaco III)
LED Junction Temperature	135°C
Operating Board Temperature	-40°C - 85°C
at Maximum DC Forward Current	10 0 00 0
Storage Temperature	-40°C - 120°C
Soldering Temperature	JEDEC 020c 260°C
Allowable Reflow Cycles	3
Reverse Voltage	Not designed to be driven in reverse bias

Color Bin

White Binning Structure Graphical Representation

White Bin Structure

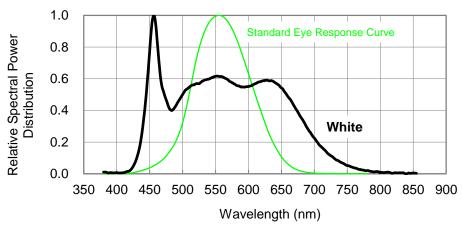

Bin Code	x	у	Typ. CCT (K)
	0.3532	0.3716	
VO	0.3308	0.3530	5180
VO	0.3305	0.3345	3100
	0.3509	0.3511	

• Tolerance on each color bin (x , y) is ± 0.005

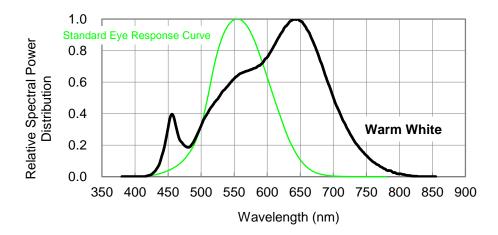
Color Bin

Warm White Binning Structure Graphical Representation

Warm White Bin Structure

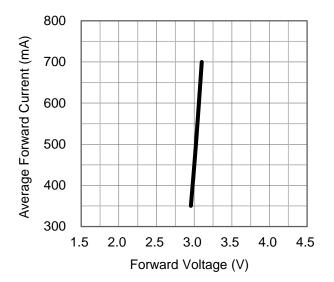

Bin Code	х	у	Typ. CCT (K)
	0.4634	0.4290	_
N0	0.4442	0.4231	2910
NO	0.4322	0.3990	2910
	0.4502	0.4043	

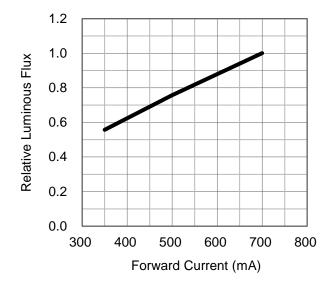
• Tolerance on each color bin (x , y) is ± 0.005



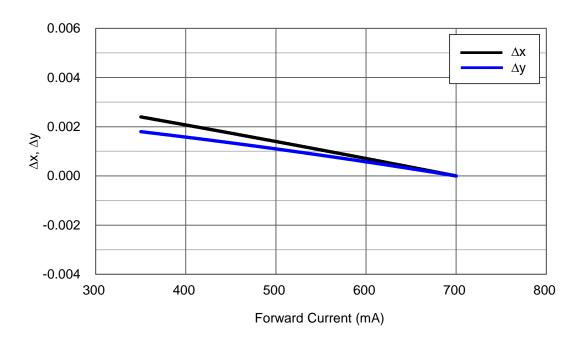
Color Spectrum, $T_1 = 25^{\circ}C$

1. White

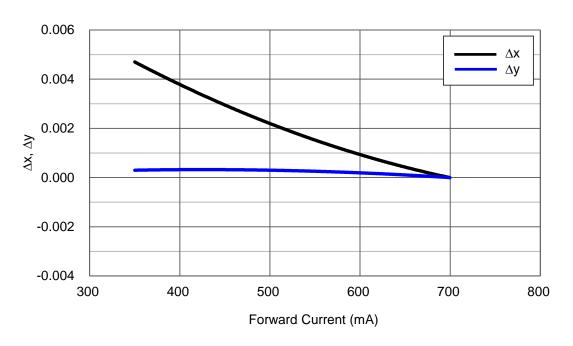

2. Warm White

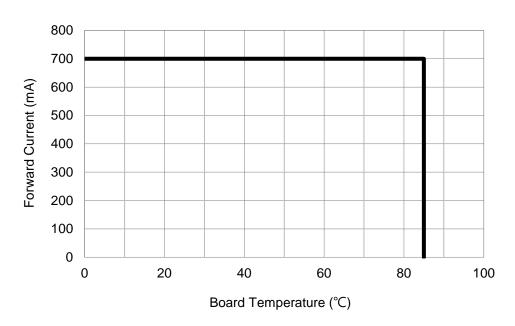


Forward Current Characteristics, T_J = 25°C

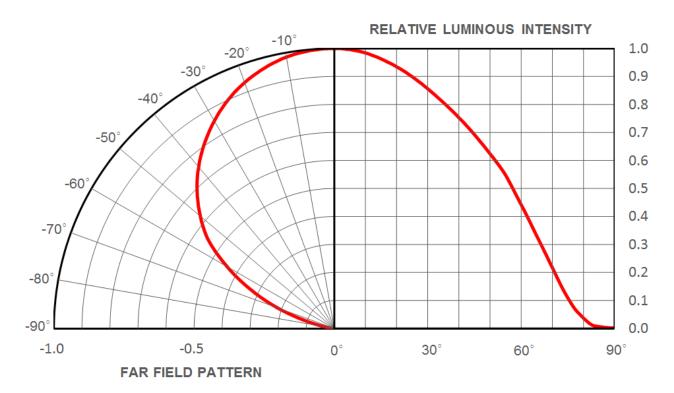

1. Forward Voltage vs. Forward Current

2. Forward Current vs. Normalized Relative Luminous Flux


3. White Forward Current vs. Chromaticity Coordinate Shift


Forward Current Characteristics, T_j = 25°C

4. Warm White Forward Current vs. Chromaticity Coordinate Shift


Board Temperature vs. Maximum Forward Current

Maximum Forward Current for 4 chip operated

Typical Representative Spatial Radiation Pattern

Moisture Sensitivity Level - JEDEC Level 1

			Soak Requirements			
Level	Floo	r Life	Stan	dard	Accelerated	Environment
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

			Soak Requ		uirements	
Level	Floor Life		Standard		Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA

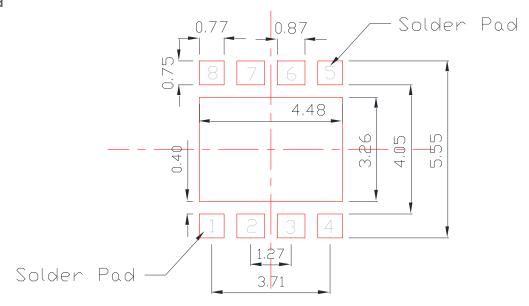
Qualification Reliability Testing

Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
Wet High Temperature Storage Life (WHTSL)	85°C/85%RH, non-operating	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec.		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

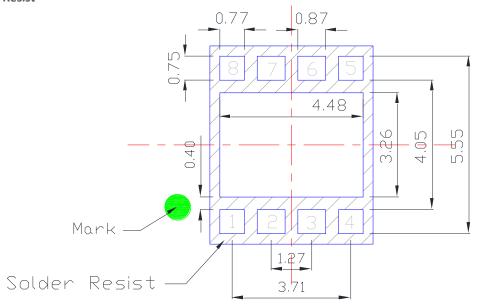
Notes:

- 1. Depending on the maximum derating curve.
- 2. Criteria for judging failure

Item	Test Condition	Criteria for	Judgement
item	Test Condition	Min.	Max.
Forward Voltage (V _F)	$I_F = max DC$		Initial Level x 1.1
Luminous Flux or	I _F = max DC	Initial Level x 0.7	
Radiometric Power (Φ _V)	IF = IIIax DC	Illiliai Levei X U.7	
Reverse Current (I _R)	$V_R = 5V$		50 µA


^{*} The test is performed after the LED is cooled down to the room temperature.

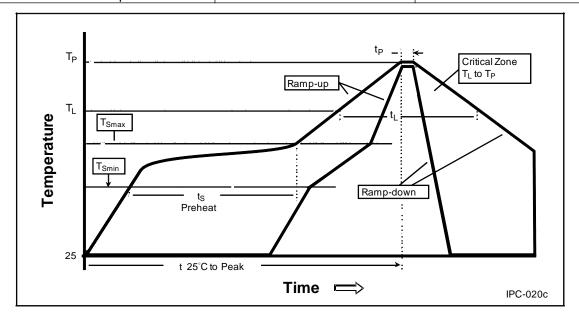
3. A failure is an LED that is open or shorted.



Recommended Solder Pad Design

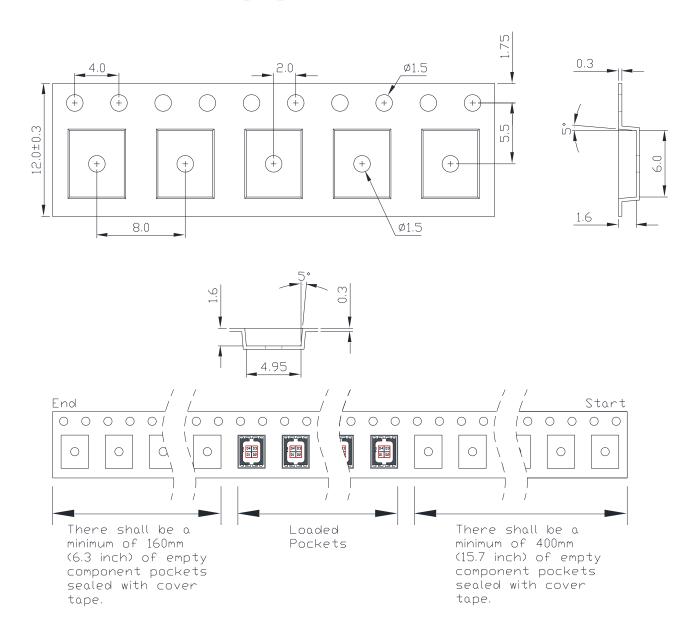
Solder Pad

Solder Resist



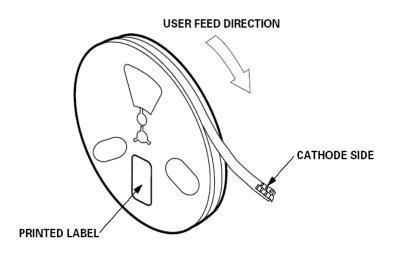
- All dimensions are in millimeters.
- Electrical isolation is required between Slug and Solder Pad.

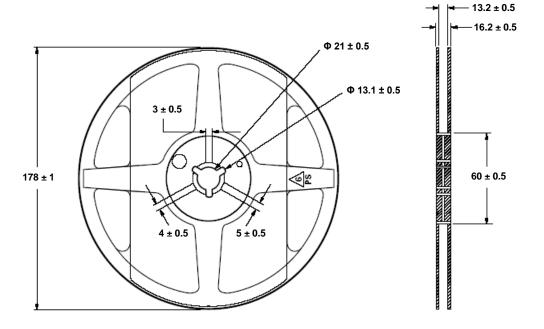
Reflow Soldering Condition


Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate	3°C / second max.	3°C / second max.
$(T_{Smax} \text{ to } T_{P})$	5 C/ Second max.	5 C/ Second max.
Preheat		
– Temperature Min (T _{Smin})	100°C	150°C
– Temperature Max (T _{Smax})	150°C	200°C
– Time (t _{Smin} to t _{Smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T _L)	183°C	217°C
– Time (t _L)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T _P)	240°C	260°C
Time Within 5°C of Actual Peak	10.30 seconds	20-40 seconds
Temperature (t _P)	10-30 seconds	20-40 Seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a
 double-head soldering iron should be used. It should be confirmed beforehand whether the
 characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Reel Packaging



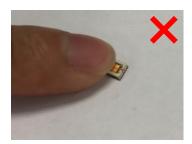

Notes:

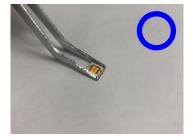
- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.1mm.

Emitter Reel Packaging

Notes

- 1. Empty component pockets sealed with top cover tape.
- 2. 250 or 500 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.


Precaution for Use


- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Handling of Lens LEDs

Notes for handling of lens LEDs

- Please do not use a force of over 1kgf impact or pressure on the lens, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- Please do not mold over the lens with another resin. (epoxy, urethane, etc)

