

www.prolightopto.com

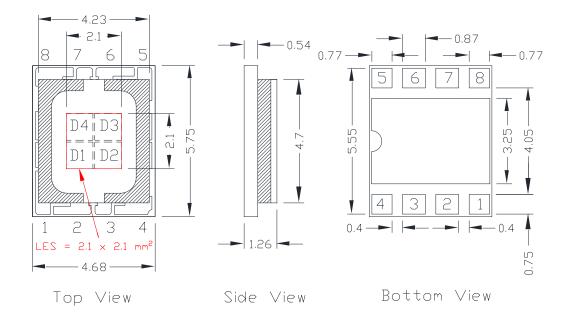
ProLight PBEE-40FVE-R9 40W Power LED Technical Datasheet Version: 1.4

ProLight Opto ProEngine Series

Features

- · Compact light source
- · Maximum drive current: 2500mA per LED die
- \cdot Lead free reflow soldering
- · Superior ESD protection
- · RoHS compliant

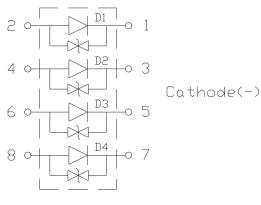
Main Applications


- · Entertainment lighting (Stage lighting)
- · Architectural lighting
- $\cdot \operatorname{Mood} \operatorname{lighting}$
- \cdot Outdoor lighting
- \cdot Indoor lighting

Introduction

 ProLight PBEE colorful series is a color changeable LED with maximum 4 color chips in one package. Compared to discrete LEDs, PBEE series reduce the distance between LED die, creating a small optical source for excellent optical control and efficient color mixing. ProLight PBEE series is much suitable for the application of color-changing lighting, especially for entertainment lighting.

Emitter Mechanical Dimensions



Circuit Diagram

D1:Warm White D2:Warm White D3:Warm White D4:Warm White

Anode(+)

Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are $\pm\,0.15\text{mm}.$
- 4. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter.
- 5. Please do not use a force of over 1kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics, $T_J = 25^{\circ}C$

		Luminous Flux Φ _v (Im)					
		Part Number	@100	00mA	Refer @	2500mA	CRI
	Color	Emitter	Min.	Тур.	Min.	Тур.	Min.
D1	Warm White	PBEE-40FVE-R9	135	160	264	312	90
D2	Warm White	PBEE-40FVE-R9	135	160	264	312	90
D3	Warm White	PBEE-40FVE-R9	135	160	264	312	90
D4	Warm White	PBEE-40FVE-R9	135	160	264	312	90

• Do not use below 40mA.

• ProLight maintains a tolerance of ± 7% on flux and power measurements.

• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, T_J = 25°C

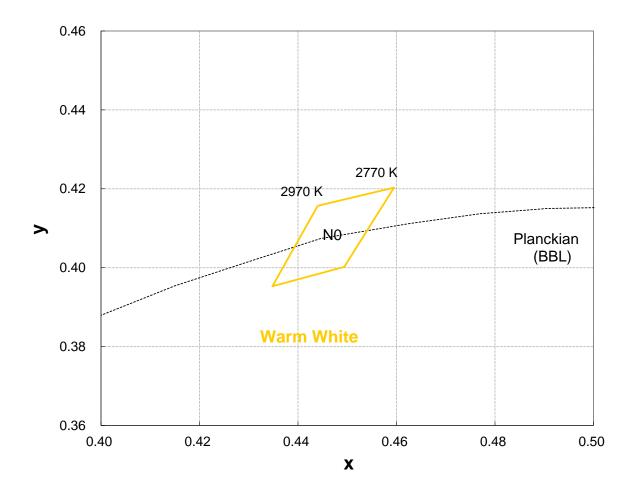
			Forward	d Voltage	V _F (V)	
			@1000mA		Refer @2500mA	Thermal Resistance
	Color	Min.	Тур.	Max.	Тур.	Junction to Slug (°C/W)
D1	Warm White	2.70	3.00	3.40	3.27	
D2	Warm White	2.70	3.00	3.40	3.27	1.1
D3	Warm White	2.70	3.00	3.40	3.27	1.1
D4	Warm White	2.70	3.00	3.40	3.27	

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 1000mA, T_J = 25°C

					Total included Angle	Viewing Angle
Radiation Pattern	Color	Color Temperature CCT Min. Typ. Max.		(degrees) θ _{0.90V}	(degrees) 2 θ _{1/2}	
Flat	Warm White	2770 K	2870 K	2970 K	160	120

• ProLight maintains a tolerance of ± 5% for CCT measurements.

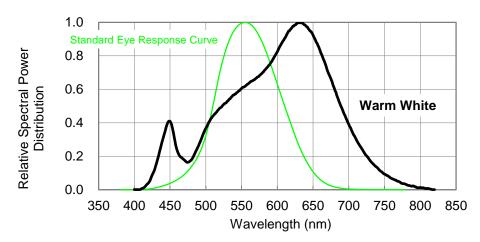

Absolute Maximum Ratings

Parameter	Warm White	
DC Forward Current (4 chips operation, T _{Board} = 25°C)	40 - 2500 mA	
DC Forward Current (Single chip operation, $T_{Board} = 25^{\circ}C$)	40 - 2500 mA	
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7)	±4000V (Class III)	
LED Junction Temperature	125°C	
Operating Board Temperature	-40°C - 85°C	
Storage Temperature	-40°C - 85°C	
Soldering Temperature	JEDEC 020c 260°C	
Allowable Reflow Cycles	3	
Reverse Voltage	Not designed to be driven in reverse bias	

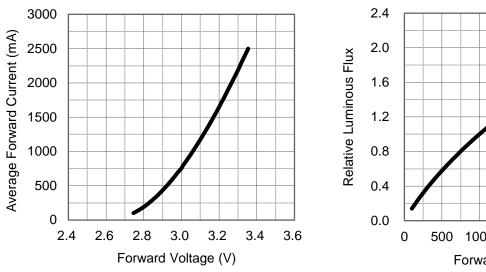
Color Bin

Warm White Binning Structure Graphical Representation

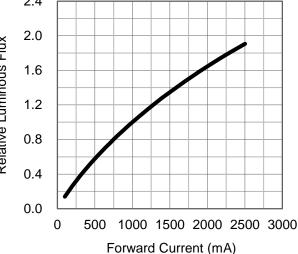
Warm White Bin Structure


Bin Code	x	У	Typ. CCT (K)
	0.4595	0.4203	
N0	0.4440	0.4157	2870
INU	0.4348	0.3953	2070
	0.4494	0.4002	

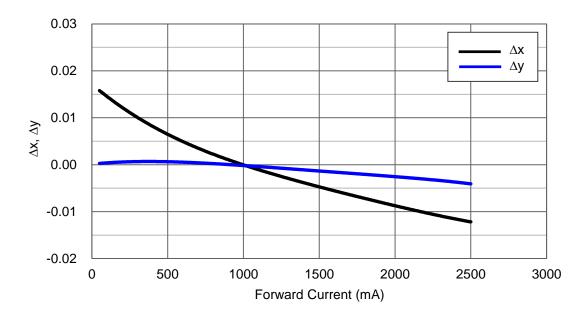
• Tolerance on each color bin (x, y) is ± 0.005


Color Spectrum, $T_j = 25^{\circ}C$

1. Warm White

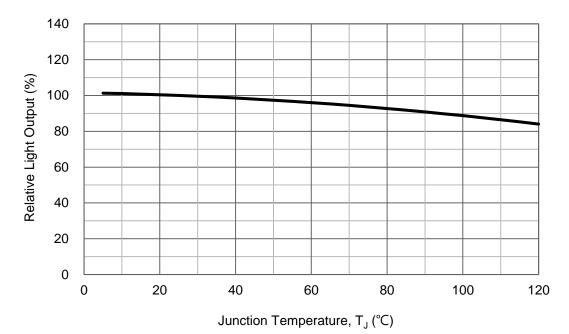


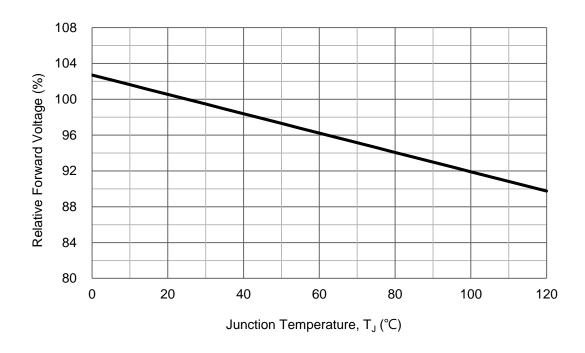
Forward Current Characteristics, T_J = 25°C



1. Forward Voltage vs. Forward Current

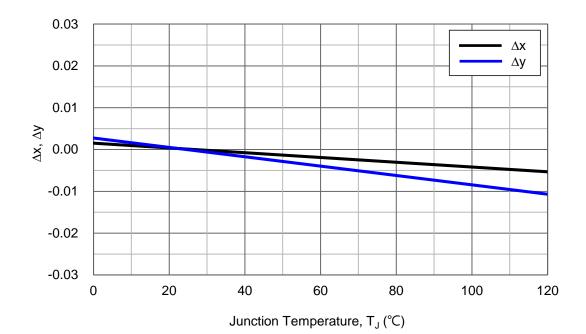
2. Forward Current vs. Normalized Relative Luminous Flux


3. Forward Current vs. Chromaticity Coordinate Shift

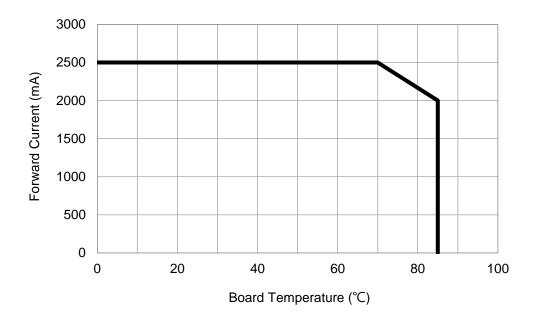


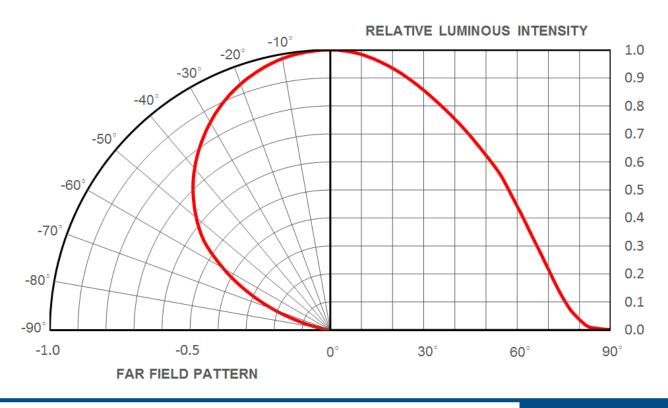
Junction Temperature Relative Characteristics

1. Junction Temperature vs. Relative Light Output at 1000mA


2. Junction Temperature vs. Relative Forward Voltage at 1000mA

Junction Temperature Relative Characteristics


3. Junction Temperature vs. Chromaticity Coordinate Shift at 1000mA



Board Temperature vs. Maximum Forward Current

Maximum Forward Current for 4 chip operated

Typical Representative Spatial Radiation Pattern

2023/07 | DS-1151

Moisture Sensitivity Level - JEDEC Level 1

			Soak Requirements				
Level	Floo	r Life	Stan	dard	Accelerated	Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA	

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

		Soak Requirer			uirements	
Level	Floor	r Life	Standard		Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA

Qualification Reliability Testing

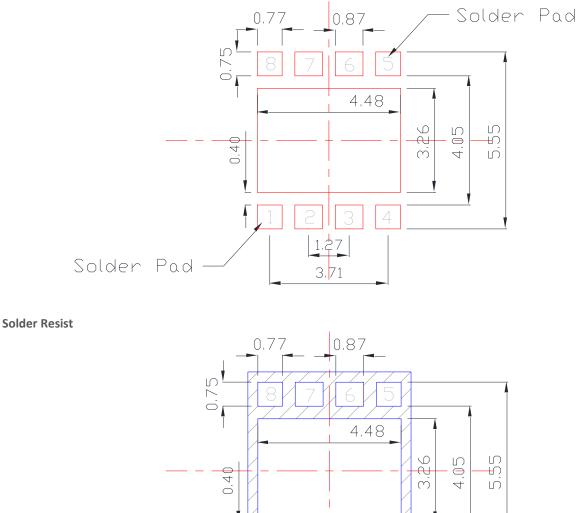
Stress Test	Stress Conditions	Stress Duration	Failure Criteria
Room Temperature Operating Life (RTOL)	25°C, I _F = max DC (Note 1)	1000 hours	Note 2
High Temperature Storage Life (HTSL)	110°C, non-operating	1000 hours	Note 2
Low Temperature Storage Life (LTSL)	-40°C, non-operating	1000 hours	Note 2
Non-operating Temperature Cycle (TMCL)	-40°C to 120°C, 30 min. dwell, <5 min. transfer	200 cycles	Note 2
Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis		Note 3
Natural Drop	On concrete from 1.2 m, 3X		Note 3
Variable Vibration Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		Note 3
Solder Heat Resistance (SHR)	260°C ± 5°C, 10 sec.		Note 3
Solderability	Steam age for 16 hrs., then solder dip at 260°C for 5 sec.		Solder coverage on lead

Notes:

1. Depending on the maximum derating curve.

2. Criteria for judging failure

Item	Test Condition	Criteria for Judgement		
nem	Test Condition	Min.	Max.	
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ_V)	I _F = max DC	Initial Level x 0.7		


* The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.

Recommended Solder Pad Design

1.27

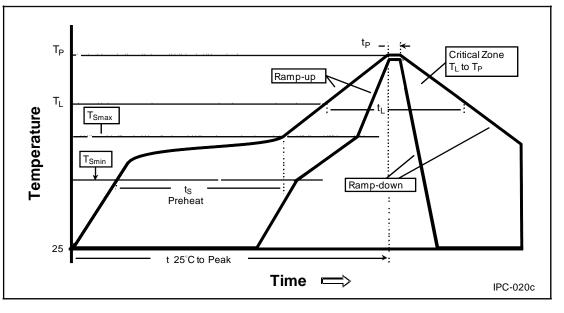
3.71

Mark

Solder Resist

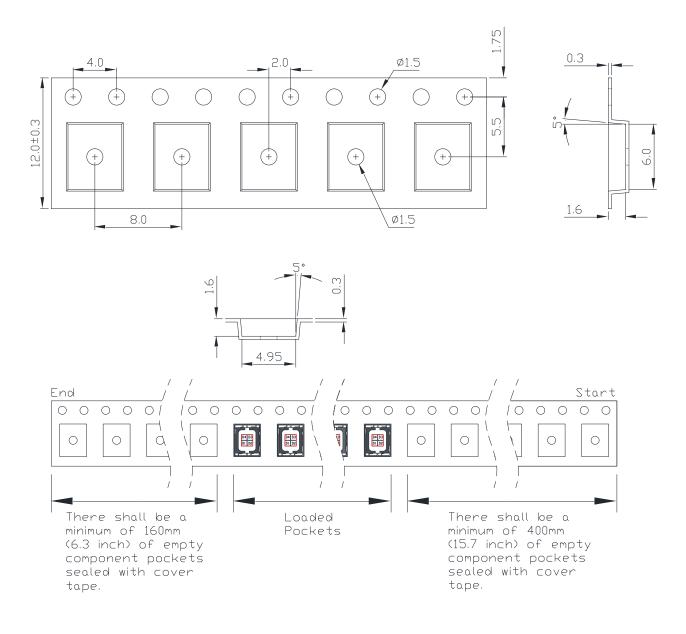
• Electrical isolation is required between Slug and Solder Pad.

Recommended MCPCB Design



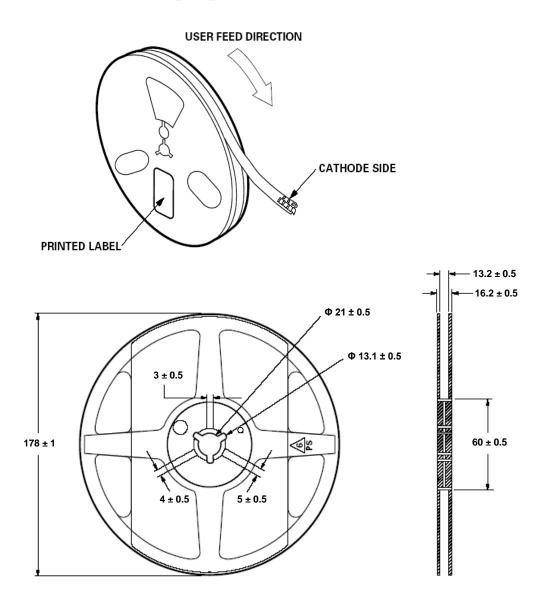
• Copper(Cu) substrate is recommended.

Reflow Soldering Condition


Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate	3°C / second max.	3°C / second max.
(T _{Smax} to T _P)	5 C/ second max.	3 C7 second max.
Preheat		
– Temperature Min (T _{smin})	100°C	150°C
– Temperature Max (T _{Smax})	150°C	200°C
– Time (t _{smin} to t _{smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T _L)	183°C	217°C
– Time (t _i)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T _P)	240°C	260°C
Time Within 5°C of Actual Peak	10-30 seconds	20-40 seconds
Temperature (t _P)	10-30 Seconds	20-40 Seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

Emitter Reel Packaging



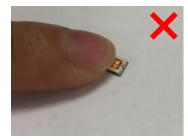
Notes:

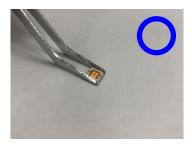
- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are $\pm\,0.1\text{mm}.$

Emitter Reel Packaging

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 250 or 500 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.


Precaution for Use


- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Handling of Lens LEDs

Notes for handling of lens LEDs

- Please do not use a force of over 1kgf impact or pressure on the lens, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- Please do not mold over the lens with another resin. (epoxy, urethane, etc)

