

ProLight PDSQ-10FVL-D2740

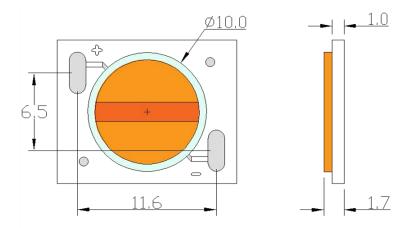
10W Warm on dim COB Light-Engine LEDs
Technical Datasheet
Version: 1.4

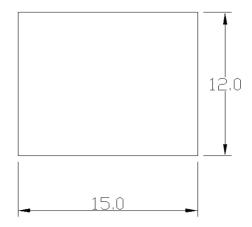
ProLight Opto ProEngine Series

Features

- · High flux density of lighting source
- · Good color uniformity
- · RoHS compliant
- More energy efficient than incandescent and most halogen lamps
- · No UV
- · Long lifetime

Main Applications


- · Par lighting
- · Spot lighting
- · Down lighting


Introduction

•The input power is 10 Watt, the multi-chip ultra high power ProEngine Series delivers never before seen luminous flux output from a single emitter. The superficial illuminating nature of ProEngine makes them the preference in Par lighting, typical applications include commercial down lighting, LED bulb, accent lighting, ceiling lighting and spot lighting.

Mechanical Dimensions

Notes:

- 1. Solder pads are labeled "+" and "-" to denote positive and negative, respectively.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. Unless otherwise indicated, tolerances are \pm 0.3mm.
- 5. Please do not use a force of over 0.3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics, $T_c = 25^{\circ}C$

Radiation	Color	Part Number	DC Forward	Luminous Flux Φ_V (lm)		CRI
Pattern	Coloi	СОВ	Current (mA)	Minimum	Typical	Тур.
Flat	Warm White	Warm White PDSQ-10FVL-D2740		49	55	91
гіаі	wann wine	FD3Q-10FVL-D2740	350	605	673	92

- ProLight maintains a tolerance of ± 7% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, T_c = 25°C

Color	DC Forward	Forward Voltage V _F (V)			Thermal Resistance	
Color	Current (mA)	Min.	Тур.	Max.	Junction to Board (°C/W)	
Warm White	50 350	12.0 16.5	13.8 18.0	15.0 19.2	3.9	

[•] ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics, T_c = 25°C

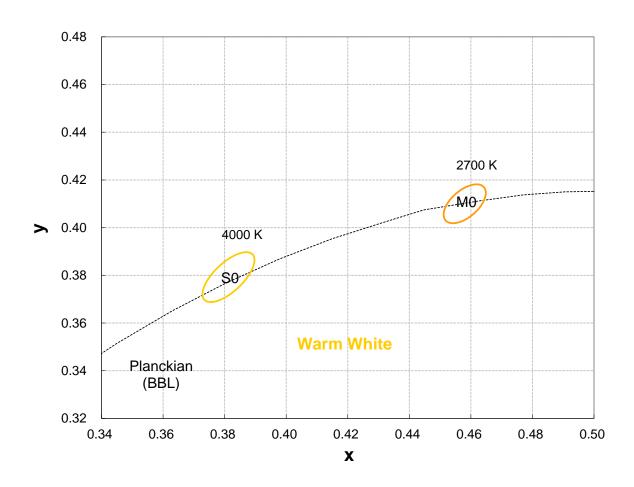
Color	DC Forward	Colo	Color Temperature CCT			Viewing Angle (degrees)	
Color	Current (mA)	Min.	Тур.	Max.	$\theta_{0.90V}$	2 θ _{1/2}	
Warm White	50	2660 K	2700 K	2780 K	160	120	
wann wine	350	3850 K	4000 K	4130 K	160	120	

ProLight maintains a tolerance of ± 5% for CCT measurements.

Electro-Optical Characteristics, T_J = 25°C

I. (A)	V 00	D (141)	PDSQ-10FVL-D2740		
I _F (mA)	V _F (V)	Power (W)	Flux (lm)	lm/W	
50	13.80	0.69	55.0	79.7	
100	15.88	1.59	158.8	100.0	
200	16.86	3.37	378.9	112.4	
300	17.64	5.29	579.7	109.6	
350	18.00	6.30	673.0	106.8	
400	18.80	7.52	763.9	101.6	
500	19.20	9.60	936.8	97.6	
600	19.59	11.76	1091.1	92.8	

[•] All values are reference only.

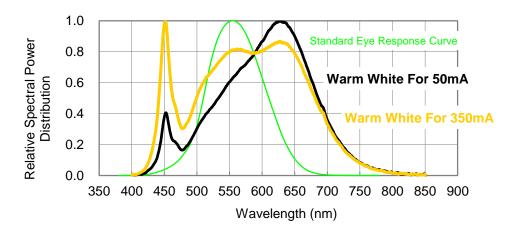

Absolute Maximum Ratings

Parameter	Warm White			
Max DC Forward Current (mA)	520			
Peak Pulsed Forward Current (mA)	600 (less than 1/10 duty cycle@1KHz)			
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7)	±2000V			
LED Junction Temperature	120°C			
Operating Board Temperature at Maximum DC Forward Current	-40°C - 90°C			
Storage Temperature	-40°C - 120°C			
Reverse Voltage	Not designed to be driven in reverse bias			

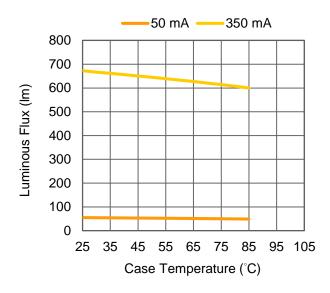
Color Bin

Warm White Binning Structure Graphical Representation

Warm White Bin Structure


Bin Code	•	Center	Oval parameter	Typ. CCT (K)	Bin Code	Center	Oval parameter	Typ. CCT (K)
MO	x y	0.4580 0.4100	a 0.00945 b 0.00490 θ° 53.7	2700	S0 x	0.3813 0.3793	a 0.01240 b 0.00520 Θ° 53.7	4000

- The chromaticity center refers to ANSI C78.377.
- Tolerance on each color bin (x, y) is ± 0.005


Color Spectrum, $T_c = 25^{\circ}C$

1. Dual Color: 2700K~4000K

Case Temperature Relative Characteristics

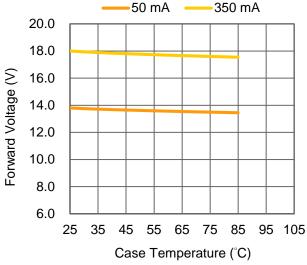


Fig 1. Case Temperature vs. Luminous Flux at 50 mA & 350 mA.

Fig 2. Case Temperature vs. Forward Voltage at 50 mA & 350 mA.

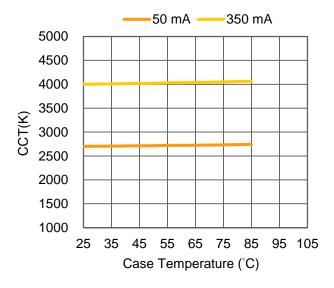


Fig 3. Case Temperature vs. Chromaticity Coordinate Δx at 50 mA & 350mA.

Forward Current Relative Characteristics

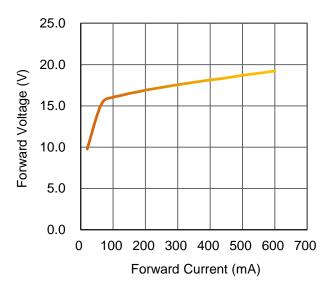


Fig 4. Forward Current vs. Forward Voltage at T_c =25°C.

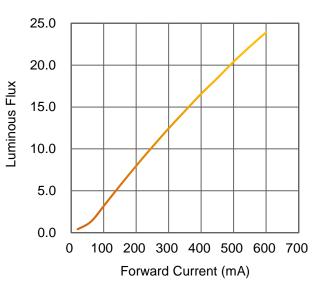


Fig 5. Forward Current vs. Relative Luminous Flux at $T_c=25^{\circ}C$.

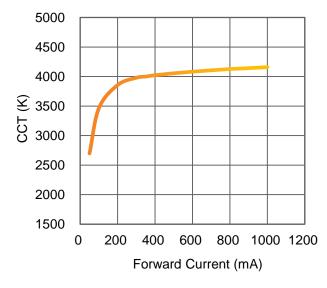


Fig 6. Forward Current vs. Color Temperature at $T_C=25$ °C.

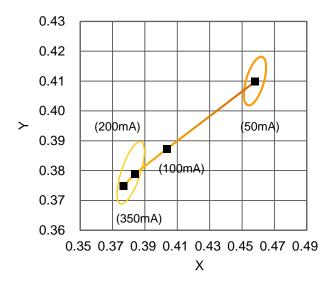
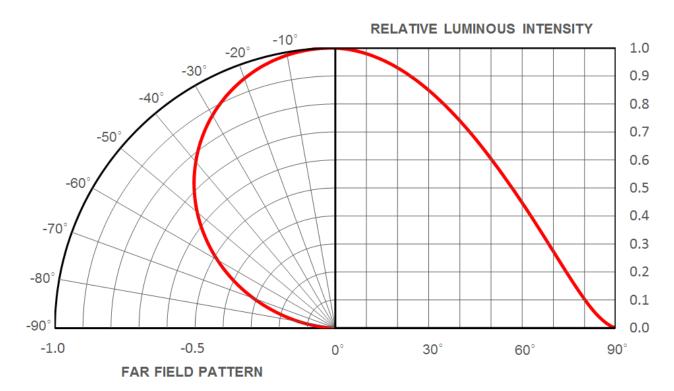
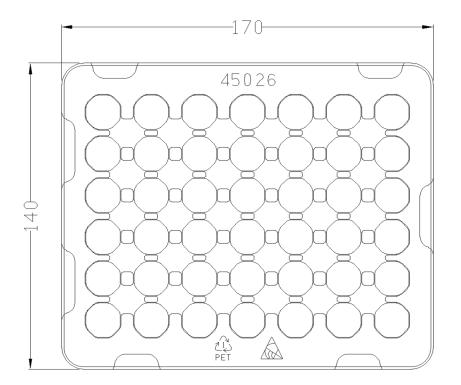


Fig 7. Chromaticity Coordinate Profile at $T_{\text{C}}\!\!=\!\!25^{\circ}\text{C}.$


Case Temperature vs. Junction Temperature Characteristics

T (°C)	T _J (°C)			
T _C (°C)	350 (mA)			
25	50			
30	55			
35	60			
40	65			
45	70			
50	75			
55	80			
60	85			
65	90			
70	95			
75	100			
80	105			
85	110			
90	115			

Fig 8. Case Temperature vs. Junction Temperature at 350mA.



Typical Representative Spatial Radiation Pattern

Packing Specifications

Product 30 pcs/tray

Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.2mm.

Recommended Soldering Condition

- Please use lead free and "no clean" solders.
- Soldering shall be implemented using a soldering tip at a temperature lower than 350 °C, and shall be finished within 3.5 seconds for each pad.
- During the soldering process, put the LEDs on materials whose conductivity is poor enough not to radiate heat of soldering.
- Properly solder tin wires before soldering them to LEDs.
- Avoid touching the silicone lens with the soldering iron.
- Please prevent flux from touching to the silicone lens.
- Please solder evenly on each pad.
- Contacts number of a soldering tip should be within twice for each pad.
- Next process of soldering should be carried out after the LEDs have return to ambient temperature.
- *ProLight cannot guarantee if usage exceeds these recommended conditions.

 Please use it after sufficient verification is carried out on your own risk if absolutely necessary.

Precaution for Use

- The modules light output are intense enough to cause injury to human eyes if viewed directly. Precautions must be taken to avoid looking directly at the modules with unprotected eyes.
- The modules are sensitive to electrostatic discharge. Appropriate ESD protection measures
 must be taken when working with the modules. Non-compliance with ESD protection
 measures may lead to damage or destruction of the product.
- Chemical solvents or cleaning agents must not be used to clean the modules.
 Mechanical stress on the Emitters must be avoided. It is best to use a soft brush, damp cloth or low-pressure compressed air.
- The products should be stored away from direct light in dry location.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Handling of Silicone Lens LEDs

Notes for handling of silicone lens LEDs

- Please do not use a force of over 0.3kgf impact or pressure on the silicone lens, otherwise it will cause a catastrophic failure.
- Avoid touching the silicone lens and the optical area of the COB Array especially by sharp tools such as Tweezers
- Avoid touching the silicone lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the silicone lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- Please do not mold over the silicone lens with another resin. (epoxy, urethane, etc)

