

ProLight AL6A-RA1DF 0.5W Power LED Technical Datasheet Version: P1.2

ProLight Opto @ AL6A Series

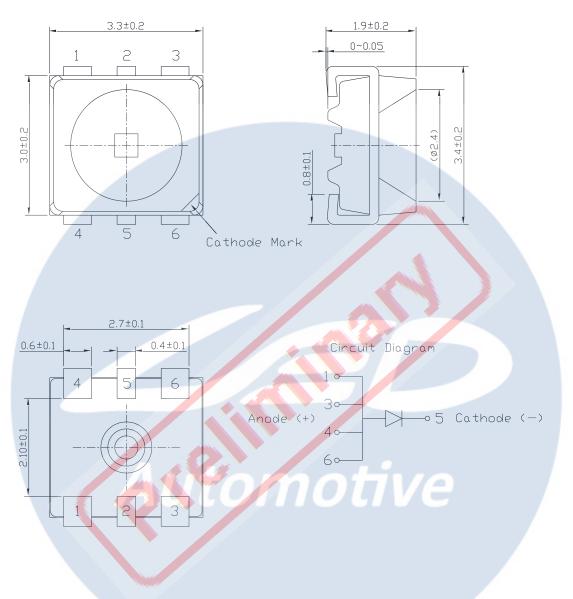
Features

- ·Moisture Sensitivity: JEDEC Level 2
- ·RoHS compliant
- ·Lead free reflow soldering

Main Applications

- ·Backlighting
- ·Signaling
- ·Exterior Automotive Lighting
- ·Automotive Interior Lighting

Introduction


·AL6A offer red color solution to meet the needs of backlighting, signaling, exterior automotive lighting, and automotive interior lighting. Alone with high-quality materials, AL6A bring not only high performance but also good reliability to fulfil customer's requirements.

2019/10 DS-0704

No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320, Taiwan (R.O.C.)

Emitter Mechanical Dimensions

Notes:

- 1. The cathode side of the device is denoted by the chamfer on the part body.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. Unless otherwise indicated, tolerances are \pm 0.10mm.
- 5. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter.
- *The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics at 140mA, T_j = 25°C

Radiation	Color	Part Number	Luminous In	tensity (cd)
Pattern	Color	Emitter	Minimum	Typical
Lambertian	Red	AL6A-RA1DF	4.5	8.1

- ProLight maintains a tolerance of ± 7% on flux and power measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 140mA, T_j = 25°C

	Forward Voltage V _F (V)			Thermal Resistance
Color	Min.	Тур.	Max.	Junction to Slug (°C/W)
Red	1.9	2.2	2.5	34

ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 140mA, T₁ = 25°C

		1			Total included Angle	Viewing Angle
Radiation Pattern	Color	Domii Min.	nant Wavelen Typ.	gth λ _D Max.	(degrees) θ _{0.90V}	(degrees) 2 θ _{1/2}
Lambertian	Red	612 nm	617 nm	624 nm	160	120

ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

Absolute Maximum Ratings

Parameter Red

Max DC Forward Current (mA)
Peak Pulsed Forward Current (mA)

LED Junction Temperature

Operating Board Temperature

at Maximum DC Forward Current

Storage Temperature

Soldering Temperature

Allowable Reflow Cycles

Reverse Voltage

ESD withstand voltage(kV)

(acc. to IEC 61000-4-2-air discharge)

200

1000 (less than 1/10 duty cycle@1KHz)

125°C

-40°C - 110°C

-40°C - 110°C

JEDEC 020c 260°C

3

Not designed to be driven in reverse bias

2

Photometric Luminous Intensity Bin Structure at 140mA

Color	Bin Code	Minimum Luminous Intensity (cd)	Maximum Luminous Intensity (cd)	Available Color Bins
	А	4.5	5.6	All
	В	5.6	7.1	All
Red	D	7.1	9.0	All
	E	9.0	11.2	[1]
	F	11.2	14.0	[1]

[•] ProLight maintains a tolerance of ± 7% on flux and power measurements.

Dominant Wavelength Bin Structure at 140mA

Color	Bin Code	Minimum Dominant Wavelength (nm)	Maximum Dominant Wavelength (nm)
	2	612	616
Red	3	616	620
	4	620	624

[•] ProLight maintains a tolerance of ± 1nm for dominant wavelength measurements.

Forward Voltage Bin Structure at 140mA

Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	А	1.90	2.05
Dod	В	2.05	2.20
Red	D	2.20	2.35
	E	2.35	2.50

• ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

5


No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320, Taiwan (R.O.C.)

The rest of color bins are not 100% ready for order currently. Please ask for quote and order Possibility.

Color Spectrum, T_J = 25°C

1. Red

Forward Current Characteristics, T_j = 25°C

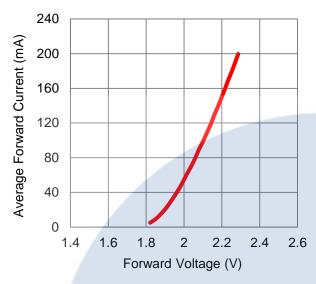


Fig 1. Forward Voltage vs. Forward Current

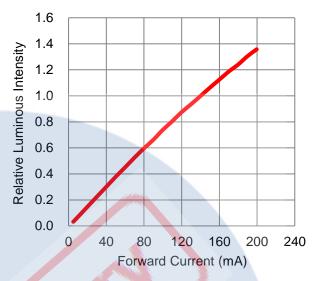


Fig 2. Forward Current vs. Normalized
Relative Luminous Intensity

Junction Temperature Characteristics

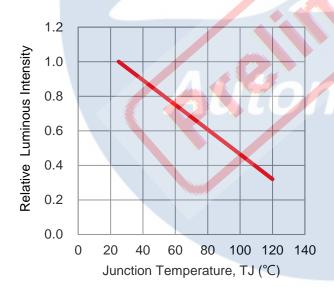


Fig 1. Relative Luminous Intensity vs. Junction Temperature at 140mA

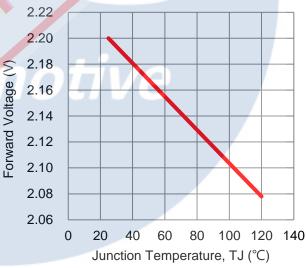
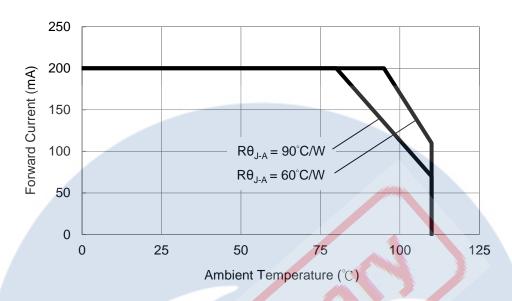
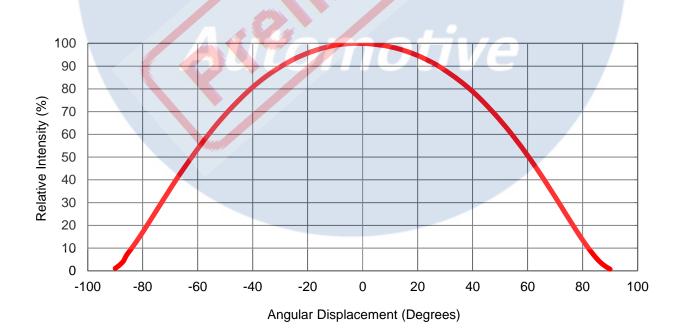



Fig 2. Forward Voltage vs. Junction Temperature at 140mA


Ambient Temperature vs. Maximum Forward Current

1. Red $(T_{JMAX} = 125^{\circ}C)$

Typical Representative Spatial Radiation Pattern

Lambertian Radiation Pattern

8

No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320,

Taiwan (R.O.C.)

Moisture Sensitivity Level - JEDEC Level 2

			Soak Requirements			
Level	Floo	r Life	Stan	dard	Accelerated	Environment
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

				Soak Requirements			
Level Floor		r Life	Stan	dard	Accelerated Environment		
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA	
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA	
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH	
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH	
4	72 hours	≤30°C / 60% RH	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH	
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH	
5a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH	
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA	

Reliability testing in accordance with AEC-Q101 (Rev D1)

The development of this product included extensive operational life-time testing and environmental testing. Table 1 summarizes the tests applied and cumulative test results obtained from testing performed in accordance with AEC-Q101(Rev D1).

Table 1. Operating life, mechanical and environmental tests performed on it's package in accordance with AEC-Q101 (Rev D1).

Abrb Stress	Conditions		Failure Criteria	Rejects
TEST Pre- and Post-Stress Electrical Test	T _J = 25°C	N/A	See notes [2]	0
PC Pre-conditioning	JESD22-A113 Soak Tamb = 85°C, RH = 85% Reflow soldering	168 hours 3 cycles	See notes [2]	0
EV External Visual	JESD22 B-101	N/A	See notes [2]	0
HTFB High Temperature Forward Bias	JESD22-A108 Tamb =85°C, IF = max. DC [1]	1000 hours	See notes [2]	0
TC Temperature Cycling	JESD22-A104 -30°C to 80°C	1000 cycles	See notes [2]	0
HTHHB High temp. & High Humidity Bias	JESD22-A101 Tamb = 85°C, RH = 85%, IF = max. DC [1]	1000 hours	See notes [2]	0
PTC Power and Temperature cycle	-30°C to 85°C, 10 minutes dwell, 20 minutes transfer (1 hour cycle), 2 minutes ON/2 minutes OFF, IF = max. DC [1]	1000 hours	See notes [2]	0
ESD	AEC Q101-001	2000V	See notes [2]	0
VVF Vibration Variable Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis		See notes [3]	0
MS Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis	TT-1/E	See notes [3]	0
RSH Resistance to Solder Heat	JESD22-A111 / JESD22-B106 260 °C ± 5 °C	10 s	See notes [3]	0
SD Solderability	J-STD-002 245 °C ± 5 °C	3 s	See notes [3]	0

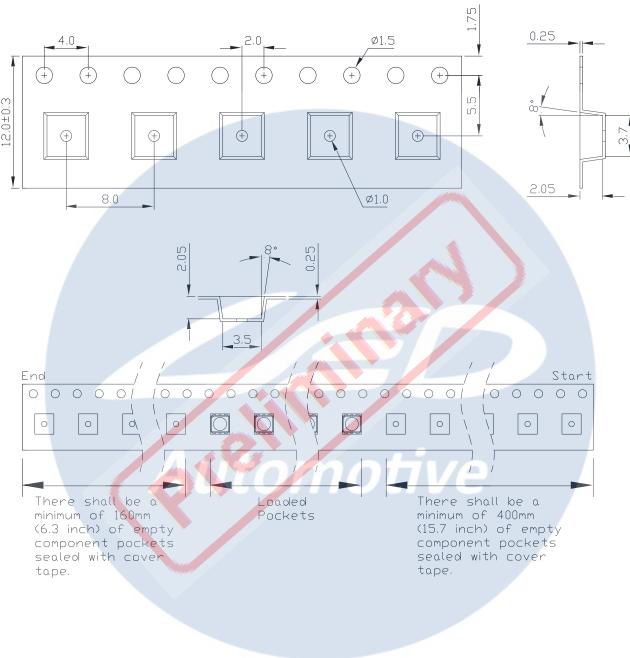
Notes:

1. Depending on the maximum derating curve.

2. Criteria for judging failure

Item	Test Condition	Criteria for Judgement		
item	rest condition	Min.	dgement Max. Initial Level x 1.1 50 µA	
Forward Voltage (V _F)	$I_F = max DC$		Initial Level x 1.1	
Luminous Flux or	I _E = max DC	Initial Level x 0.8		
Radiometric Power (Φ _V)	IF = Max BC	Initial Edvor X 0.0		
Reverse Current (I _R)	$V_R = 5V$		50 µA	

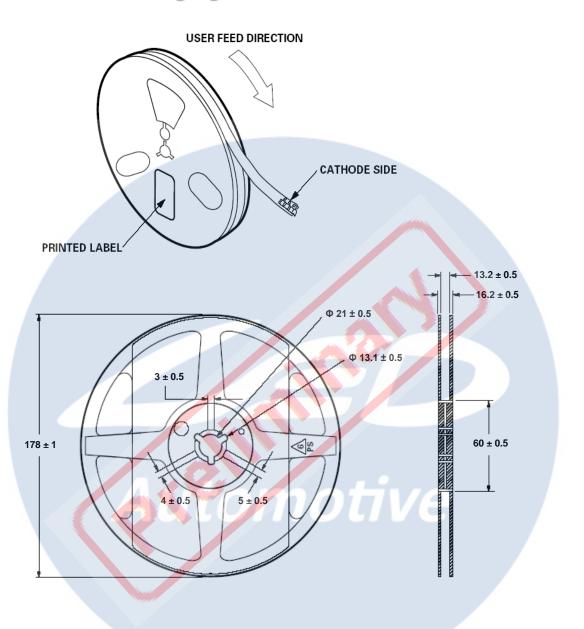
^{*} The test is performed after the LED is cooled down to the room temperature.


3. A failure is an LED that is open or shorted.

10

No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320, Taiwan (R.O.C.)

Emitter Reel Packaging



Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.10mm.

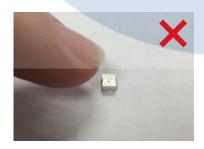
Emitter Reel Packaging

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 1000 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.

Precaution for Use

Storage


Please do not open the moisture barrier bag (MBB) more than one week. This may cause the leads of LED discoloration. We recommend storing ProLight's LEDs in a dry box after opening the MBB. The recommended storage conditions are temperature 5 to 30 °C and humidity less than 40% RH. It is also recommended to return the LEDs to the MBB and to reseal the MBB.

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.

Handling of Silicone LEDs

Notes for handling of silicone lens LEDs

- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the silicone especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the silicone.
- Please store the LEDs away from dusty areas or seal the product against dust.
- When populating boards in SMT production, there are basically no restrictions regarding the form of the pick and place nozzle, except that mechanical pressure on the silicone must be prevented.
- Please do not mold over the silicone with another resin. (epoxy, urethane, etc)

13

No. 89, Xiyuan Rd., Zhongli City, Taoyuan County 320, Taiwan (R.O.C.)