

ProLight PAPB-12FQL-D2765 12W Dual Color COB Technical Datasheet Version: 1.4

ProLight Opto ProEngine Series

Features

- · High flux density of lighting source
- · Good color uniformity
- · RoHS compliant
- Energy Star binning structure, neutral white and warm white with 3 steps guarantee.
- More energy efficient than incandescent and most halogen lamps
- · No UV
- · Long lifetime
- · 5 year warranty

Main Applications

- · Spot lighting
- · Down lighting

Introduction

- The 12W multi-chip power ProEngine Series is designed with 2 channels, providing color temperature changes from 6500K to 2700K remaining similar flux.
- The superficial illuminating nature makes it the preference in applications including downlighting, spot lighting and accent lighting at restaurant, hotel, studio, historical spot and home.

Mechanical Dimensions

Notes:

- 1. Solder pads are labeled "+" and "-" to denote positive and negative, respectively.
- 2. Drawing not to scale.
- 3. All dimensions are in millimeters.
- 4. Unless otherwise indicated, tolerances are \pm 0.3mm.
- 5. Please do not use a force of over 0.3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics at 250mA, $T_c = 25^{\circ}C$

Radiation	Color	Part Number	Luminous Flux Φ_{V} (Im)		CRI
Pattern	Coloi	СОВ	Minimum	Typical	Min.
Flat	Channel 1	PAPB-12FQL-D2765	935	1040	90
	Channel 2	FAFB-12FQL-D2703	910	1010	90

- ProLight maintains a tolerance of ± 7% on flux and power measurements.
- ProLight maintains a tolerance of ± 2 on CRI measurements.
- Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics at 250mA, $T_c = 25$ °C

Color	F	orward Voltage V _F (\	Thermal Resistance	
Color	Min.	Тур.	Max.	Junction to Board (°C/W)
Channel 1	34.0	37.0	40.0	0.86
Channel 2	33.0	36.0	39.0	0.00

[•] ProLight maintains a tolerance of ± 1V for Voltage measurements.

Optical Characteristics at 250mA, $T_c = 25^{\circ}C$

Color	Bin Code	Color Temperature CCT			Total included Angle (degrees)	Viewing Angle (degrees)
Color		Min.	Тур.	Max.	$\theta_{0.90V}$	2 θ _{1/2}
Channel 1 Channel 2	X0 M1	6300 K 2670 K	6500 K 2700 K	7010 K 2840 K	160 160	120 120

[•] ProLight maintains a tolerance of ± 5% for CCT measurements.

Electro-Optical Characteristics, T_J = 25°C

I. (A)	V _F (V)	D	Chanr	nel 1
I _F (mA)		Power (W)	Flux (lm)	lm/W
70	33.40	2.34	329.6	141.0
140	35.15	4.92	624.8	127.0
200	36.49	7.30	859.3	117.8
250*	37.50	9.37	1040.0	110.9
315	38.76	12.21	1261.0	103.3
I (m A)	V 00	Dower (M/)	Chanr	nel 2
I _F (mA)	V _F (V)	Power (W)	Chanr Flux (lm)	nel 2 Im/W
I _F (mA)	V _F (V)	Power (W) 2.30		
		, ,	Flux (Im)	lm/W
70	32.79	2.30	Flux (lm) 307.2	133.9
70 140	32.79 34.15	2.30 4.78	Flux (lm) 307.2 594.0	133.9 124.2

[•] All values are reference only.

Absolute Maximum Ratings

Parameter	Channel 1/Channel 2		
Max DC Forward Current (mA)	315		
Peak Pulsed Forward Current (mA)	350 (less than 1/10 duty cycle@1KHz)		
ESD Sensitivity (HBM per MIL-STD-883E Method 3015.7)	±2000V		
LED Junction Temperature	120°C		
Operating Board Temperature at Maximum DC Forward Current	-40°C - 90°C		
Storage Temperature	-40°C - 120°C		
Reverse Voltage	Not designed to be driven in reverse bias		

Color Bin

Channel 1 and Channel 2 Binning Structure Graphical Representation

Channel 1 and Channel 2 Bin Structure

Bin Code	x	у	Typ. CCT (K)	Bin Code	x	у	Typ. CCT (K)
	0.4600	0.4300			0.3080	0.3110	
M1	0.4530	0.4160	2700	X0	0.3050	0.3220	6500
IVI I	0.4670	0.4190	2700	Λυ	0.3160	0.3330	0300
	0.4730	0.4320			0.3170	0.3200	

• Tolerance on each color bin (x , y) is ± 0.005

Color Spectrum, $T_J = 25^{\circ}C$

1. Dual Color: 2700K~6500K

Forward Current Relative Characteristics

Fig 1. Forward Current vs. Forward Voltage at T_c =25°C.

Fig 2. Forward Current vs. Relative Luminous Flux at T_c =25°C.

Fig 3. Chromaticity Coordinate Profile at T_C=25°C.

2700 K: Channel 1 250mA Channel 2 0mA 3000 K: Channel 1 210mA Channel 2 40mA 3600 K: Channel 1 150mA Channel 2 100mA 4200 K: Channel 1 100mA Channel 2 150mA 5000 K: Channel 1 50mA Channel 2 200mA 6500 K: Channel 1 0mA Channel 2 250mA

Typical Representative Spatial Radiation Pattern

Packing Specifications

Product 30 pcs/tray

Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.2mm.

Recommended Soldering Condition

- Please use lead free and "no clean" solders.
- Soldering shall be implemented using a soldering tip at a temperature lower than 350 °C, and shall be finished within 3.5 seconds for each pad.
- During the soldering process, put the LEDs on materials whose conductivity is poor enough not to radiate heat of soldering.
- Properly solder tin wires before soldering them to LEDs.
- Avoid touching the silicone lens with the soldering iron.
- Please prevent flux from touching to the silicone lens.
- Please solder evenly on each pad.
- Contacts number of a soldering tip should be within twice for each pad.
- Next process of soldering should be carried out after the LEDs have return to ambient temperature.
- *ProLight cannot guarantee if usage exceeds these recommended conditions.

 Please use it after sufficient verification is carried out on your own risk if absolutely necessary.

Precaution for Use

- The modules light output are intense enough to cause injury to human eyes if viewed directly.
 Precautions must be taken to avoid looking directly at the modules with unprotected eyes.
- The modules are sensitive to electrostatic discharge. Appropriate ESD protection measures
 must be taken when working with the modules. Non-compliance with ESD protection
 measures may lead to damage or destruction of the product.
- Chemical solvents or cleaning agents must not be used to clean the modules.
 Mechanical stress on the Emitters must be avoided. It is best to use a soft brush, damp cloth or low-pressure compressed air.
- The products should be stored away from direct light in dry location.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Handling of Silicone Lens LEDs

Notes for handling of silicone lens LEDs

- Please do not use a force of over 0.3kgf impact or pressure on the silicone lens, otherwise it will cause a catastrophic failure.
- Avoid touching the silicone lens and the optical area of the COB Array especially by sharp tools such as Tweezers
- Avoid touching the silicone lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the silicone lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- Please do not mold over the silicone lens with another resin. (epoxy, urethane, etc)

